Skip to content

Everything You Need to Know about Knowledge Distillation

Published: at 05:17

好的,我将按照您要求的格式分析并输出文章摘要。

关键字: Knowledge Distillation, Teacher-Student Model, Model Compression, DeepSeek, Scaling Laws

概述: 本文深入探讨了知识蒸馏(Knowledge Distillation, KD)这一热门技术,该技术通过将大型教师模型的知识迁移到小型学生模型,实现了模型压缩和性能提升。文章回顾了知识蒸馏的起源和发展,详细解释了其核心思想、不同类型(如基于响应、基于特征和基于关系的蒸馏)以及改进算法。此外,文章还介绍了知识蒸馏的缩放规律,讨论了其优势与局限性,并通过DeepSeek等实际案例展示了知识蒸馏在现实世界中的应用。最后,文章总结了知识蒸馏的意义,并提供了深入学习的资源。

分节阅读:

相关工具:

参考文献:

  1. Distilling the Knowledge in a Neural Network: https://huggingface.co/papers/1503.02531
  2. Knowledge Distillation: A Survey: https://huggingface.co/papers/2006.05525
  3. Distillation Scaling Laws: https://huggingface.co/papers/2502.08606
  4. FitNets: Hints for Thin Deep Nets: https://huggingface.co/papers/1412.6550
  5. Understanding and Improving Knowledge Distillation: https://huggingface.co/papers/2002.03532
  6. Compact Language Models via Pruning and Knowledge Distillation: https://huggingface.co/papers/2407.14679
  7. Survey on Knowledge Distillation for Large Language Models: Methods, Evaluation, and Application: https://huggingface.co/papers/2407.01885
  8. A Survey on Knowledge Distillation of Large Language Models: https://huggingface.co/papers/2402.13116
  9. Distilling Diffusion Models into Conditional GANs: https://huggingface.co/papers/2405.05967
  10. Explaining Knowledge Distillation by Quantifying the Knowledge: https://huggingface.co/papers/2003.03622
  11. Unleash Data Generation for Efficient and Effective Data-free Knowledge Distillation: https://arxiv.org/pdf/2310.00258v1
  12. Knowledge Distillation from Language Model to Acoustic Model: A Hierarchical Multi-Task Learning Approach: https://huggingface.co/papers/2110.10429
  13. Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling: https://huggingface.co/papers/2410.11325
  14. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning: https://huggingface.co/papers/2501.12948
  15. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter: https://huggingface.co/papers/1910.01108
  16. Knowledge Distillation Using Frontier Open-Source LLMs: Generalizability and the Role of Synthetic Data: https://huggingface.co/papers/2410.18588
  17. Efficient Knowledge Distillation of SAM for Medical Image Segmentation: https://huggingface.co/papers/2501.16740
  18. MonoTAKD: Teaching Assistant Knowledge Distillation for Monocular 3D Object Detection: https://huggingface.co/papers/2404.04910

原文链接: https://huggingface.co/blog/Kseniase/kd

source: https://huggingface.co/blog/Kseniase/kd


Next Post
Minions: the rise of small, on-device LMs · Hazy Research