好的,这是对您提供的文本的分析和总结:
语言: 简体中文
关键字: AI design patterns, Responsible AI, User Experience, AI-Ops, Optimization Patterns
概述:
本文深入探讨了现代AI系统设计中涌现出的实用设计模式,这些模式旨在解决传统软件和机器学习模式未能充分解决的新挑战。文章将这些模式归纳为五大类:Prompting & Context Patterns(提示与上下文模式)、Responsible AI Patterns(负责任的AI模式)、User Experience Patterns(用户体验模式)、AI-Ops Patterns(AI运维模式)和Optimization Patterns(优化模式)。通过对每种模式的详细解析和实际案例的展示,本文旨在帮助开发者构建更有效、更可靠、更具成本效益且用户友好的AI应用。文章还提到了模型微调、多智能体协作和自主系统等高级模式,为读者提供了更广阔的AI系统设计视野。
分节阅读:
-
Why Design Patterns for AI Systems?
- 传统的软件设计模式和机器学习模式在应对现代AI系统的新挑战时存在局限性。
- AI设计模式通过提供标准化的解决方案和共享的词汇表,加速开发、减少错误并简化维护。
- 现代AI系统面临如何引导模型输出、构建用户信任以及降低计算成本等独特问题。
-
Prompting and Context Patterns
- 在AI系统中,模型行为很大程度上取决于指令和上下文,因此有效的提示至关重要。
- Prompting模式可以提高模型的推理能力、准确性和一致性,并创建可重用的提示。
- Few-Shot Prompting、Role Prompting、Chain-of-Thought (CoT) 和 Retrieval-Augmented Generation (RAG) 是四种关键的提示模式。
-
Responsible AI Patterns
- 负责任的AI模式旨在减少幻觉、防止不当内容、减轻偏见并确保AI决策的透明度。
- RAG模式通过将输出与外部上下文关联,有助于减少幻觉。
- Output Guardrails Pattern和Model Critic Pattern是两种额外的模式,用于确保安全、公平和符合道德规范。
-
User Experience (UX) Patterns
- 用户体验模式对于处理AI系统的不确定性和开放性至关重要,旨在保持用户参与度、满意度和透明度。
- Contextual Guidance Pattern通过提供提示示例和功能概述来降低用户的学习曲线。
- Editable Output Pattern和Iterative Exploration Pattern允许用户修改和迭代生成的内容,从而增强人机协作。
-
AI-Ops Patterns
- AI-Ops模式是专门为现代AI系统设计的DevOps,用于管理性能、成本、用户交互和系统可靠性。
- Metrics-Driven AI-Ops Pattern通过跟踪关键指标来快速检测质量下降。
- Prompt-Model-Config Versioning Pattern通过版本控制和测试来防止“隐形更改”破坏用户体验。
-
Optimization Patterns
- 优化模式旨在解决API速率限制、延迟增加和推理成本上升等运营瓶颈。
- Prompt Caching Pattern通过缓存和重用响应来减少LLM调用。
- Continuous Dynamic Batching Pattern通过批量处理请求来提高GPU利用率和系统吞吐量。
- Intelligent Model Routing Pattern通过将查询路由到适当的模型来平衡成本效率和模型准确性。
-
Advanced Patterns
- 模型微调和定制、多智能体编排以及Agentic AI和自主系统是三个关键的高级领域。
- 模型微调和定制包括Domain-Specific Fine-Tuning、Knowledge Distillation、LoRA、MoE和Quantization等方法。
- 多智能体编排涉及多个专门的AI智能体协同工作,常见的模式包括LLM-as-a-Judge、Role-Based Multi-Agent Collaboration、Reflection Loops和Tool-Using Agents。
相关工具:
- OLLAMA: (未提供链接,请自行搜索)
- Hugging Face Transformers: (未提供链接,请自行搜索)
- Amazon Bedrock: https://aws.amazon.com/blogs/machine-learning/effectively-use-prompt-caching-on-amazon-bedrock/
- vLLM: (未提供链接,请自行搜索)
- NVIDIA Triton Inference Server: https://docs.nvidia.com/deeplearning/triton-inference-server/user-guide/docs/user_guide/batcher.html
参考文献:
- object-oriented patterns: https://en.wikipedia.org/wiki/Design_Patterns
- ML design patterns: https://github.com/GoogleCloudPlatform/ml-design-patterns
- multimodal applications: https://en.wikipedia.org/wiki/Multimodal_learning
- LLMs: https://en.wikipedia.org/wiki/Large_language_model
- LMMs: https://www.mdpi.com/2076-3417/14/12/5068
- Few-Shot Prompting: https://arxiv.org/abs/2005.14165
- Role Prompting: https://learnprompting.org/docs/advanced/zero_shot/role_prompting?srsltid=AfmBOooxvMlC9VJYhGVvfVbudWoonLErEpEkFy0-YPrgRBkNiqtbb4l7
- OpenAI’s: https://platform.openai.com/docs/guides/prompt-engineering/prompt-engineering
- Anthropic’s: https://docs.anthropic.com/en/docs/test-and-evaluate/strengthen-guardrails/keep-claude-in-character
- Chain-of-Thought: https://arxiv.org/abs/2201.11903
- Claude-3.7: https://www.anthropic.com/news/claude-3-7-sonnet
- OpenAI o1: https://openai.com/o1/
- OpenAI: https://help.openai.com/en/articles/10032626-prompt-engineering-best-practices-for-chatgpt#:~:text=%E2%80%9C%E2%80%9D%E2%80%9D-,Provide%20step%2Dby%2Dstep%20instructions,-Step%2Dby%2Dstep
- Anthropic: https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/chain-of-thought
- RAG: https://aws.amazon.com/what-is/retrieval-augmented-generation/
- groundedness score: http://news.microsoft.com/source/features/company-news/why-ai-sometimes-gets-it-wrong-and-big-strides-to-address-it/#:~:text=The%20company%20also%20announced%20a,evaluate%20responses%20against%20sourcing%20documents
- constitutional approach: https://www.anthropic.com/news/claudes-constitution
- Github Copilot: https://github.blog/ai-and-ml/generative-ai/how-we-evaluate-models-for-github-copilot/
- Notion: https://www.notion.com/blog/the-design-thinking-behind-notion-ai
- GitHub Copilot: https://learn.microsoft.com/en-us/power-pages/configure/add-code-copilot
- ChatGPT’s canvas: https://openai.com/index/introducing-canvas/
- Microsoft research: https://learn.microsoft.com/en-us/microsoft-cloud/dev/copilot/isv/ux-guidance
- LLM-judge: https://arxiv.org/abs/2306.05685
- Knowledge Distillation: https://arxiv.org/abs/1910.01108
- LoRA: https://arxiv.org/abs/2106.09685
- MoE: https://arxiv.org/abs/2101.03961
- Quantization: https://arxiv.org/abs/2305.14314
- LLM-as-a-Judge: https://arxiv.org/abs/2411.16594
- Role-Based Multi-Agent Collaboration: https://arxiv.org/abs/2303.17760
- Reflection Loops: https://arxiv.org/abs/2303.11366
- Tool-Using Agents: https://arxiv.org/abs/2303.17580